
freeWrap
6.42

Documentation

Build stand-alone TCL/TK executables. No compiler required!

OR

Use it as a single-file WISH shell

freeWrap 6.42 Documentation

Table of Contents
freeWrap License...3
Overview..4
Availability..6
freeWrap as a TCL/TK wrapper program ...7
freeWrap as a single-file WISH interpreter...9
freeWrap program packages..10
freeWrap's console window...10
Using the DDE and Registry packages (Windows only)...10
Using wrapped files...10
Naming and referring to wrapped files..11
Wrapping and using TCL/TK extensions (packages)..11

Script only extensions...12
Extensions containing a single binary file..13
More complex extensions with both scripts and binary libraries..13

Using the WINICO features..15
Special variables, procedures and commands defined by freeWrap...15

The ::freewrap namespace...15
The freeWrap stub...16
Procedures...16
Commands..20

Character encodings...22
Stdin/Stdout redirection with the exec and open commands...22
How freeWrap encryption works...22
Building freeWrap...24

Dependencies..24
How to build freeWrap version 6.42...24

ZVFS: The ZIP Virtual File System TCL Extension..28
Introduction...28
Using ZVFS..28
Limitations..29
Overlays..29
Using The Executable As The ZIP Archive..30
ZVFS source code...30

Page 2 of 30

freeWrap 6.42 Documentation

freeWrap License
Copyright (c) 1998-2009 by Dennis R. LaBelle (freewrapmgr@users.sourceforge.net) All Rights
Reserved.

This software is provided 'as-is', without any express or implied warranty. In no event will the authors be
held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications,
and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being
the original software.

3. This notice may not be removed or altered from any source distribution.

Page 3 of 30

freeWrap 6.42 Documentation

Overview
The freewrap program turns TCL/TK scripts into single-file binary executable programs.

The resulting program can be distributed to machines that do not have TCL/TK installed. The executable
will also work on machines that have TCL/TK installed but will use its own TCL/TK "image". freeWrap
itself does not need TCL/TK installed to run.

Easy, one-step wrapping.
FreeWrap consists of a single executable file. There is no setup required. Wrapping is accomplished with
a single command.

Your source and data files are protected from prying eyes.
FreeWrap automatically encrypts all files you wrap into your executable application to provide a secure
distribution.

freewrapTCLSH can be used to wrap TCL-only scripts.
FreewrapTCLSH creates a single executable file from a TCL script. The wrapping syntax is identical to
the freewrap program. This produces a console-only type of program.

freeWrap can be used as a single file stand-alone WISH
Renaming the freeWrap program to some other file name causes freeWrap to behave as a a stand-alone,
single-file WISH that can be used to run any TCL/TK script or a freeWrap package containing all the
files in your application.

freewrapTCLSH can be used as a single file stand-alone TCLSH shell
Renaming the freewrapTCLSH program to some other file name causes freewrapTCLSH to behave as a a
stand-alone, single-file TCLSH shell that can be used to run any TCL script or a freeWrap package
containing all the files in your application.

Shared libraries can be used with your wrapped programs.
FreeWrapped applications can load TCL/TK shared library extensions that have been compiled with the
STUBS interface.

Your wrapped programs can be customized with your own window icons.
The Windows version of freeWrap can incorporate your own customized icon into your wrapped
application.

No license fees for wrapped programs.
There are no license fees associated with freeWrap. See the freeWrap license .

Cross-platform generation of programs is supported.
The -w "wrap using" option allows cross-platform creation of wrapped applications without the use of the
target computer system.

freeWrap includes several Windows-specific commands
These commands can be used to determine the location of Windows' special directories and make for
easy creation of file extension associations and shortcuts.

freeWrap includes commands for ZIP file creation and extraction.
Due to freeWrap's use of the ZIP Virtual File System any ZIP archive can be opened so its contents look
like a simple file subdirectory. The archive's files are automatically decompressed when read with TCL

Page 4 of 30

freeWrap 6.42 Documentation
commands.

The makeZIP command allows creation and modification of ZIP archives from within your freeWrapped
application.

freeWrap 6.42 is based on TCL/TK version 8.5.6.

Page 5 of 30

freeWrap 6.42 Documentation

Availability
FreeWrap executables are freely available for both Linux and Windows95/98/NT/2000/XP. Instructions
and source code for building freeWrap on both Windows and UNIX platforms are included in the
freeWrap source code distribution.

Versions of freeWrap that include the SQLite and TkTable extensions to TCL/TK are also available for
download.

TCL-only versions of freeWrap are also available for wrapping TCL (non-TK) scripts.

Visit http://sourceforge.net/projects/freewrap to download files.

Page 6 of 30

http://sourceforge.net/projects/freewrap

freeWrap 6.42 Documentation

freeWrap as a TCL/TK wrapper program
FreeWrap can wrap TCL/TK applications that consist of multiple script and binary image files. FreeWrap
combines all the files together into a single executable file. The syntax for wrapping an application is
described below.

Calling Syntax: freewrap mydir/prog.tcl [-debug] [-f FileLoadList] [-forcewrap] [-i ICOfile] [-o OutFile]
[-p] [-w WrapStub] File1 ... FileN

 where: mydir/prog.tcl

File1 ... FileN

 -debug

 -f

-forcewrap

 -i

 -o

 -p

 -w

file path to main TCL/TK program script

A list of space-separated text or binary files to include in the
wrapped application.

Opens a console window so user can see debug messages
while wrapping.

Specifies that the following named file (FileLoadList) contains a
list of files to wrap

Force freeWrap to act as a wrapping program even if it has been
renamed.

Substitute the following named Windows ICO file (ICOfile) as the
program application icon.

Indicates that the name of the produced executable program
should be set to OutFile.

Create a freeWrap program package instead of an executable
program.

Specifies that the following named file (WrapStub) is the name of
the file to use as the freeWrap stub

output: prog (Linux)
prog.exe (Windows)

Note: the output file will be placed in the current directory from which freeWrap is
called.

The names of the files being wrapped may include either relative or full paths. The resulting executable
program can access the wrapped files by either refering to them by their full path as they existed at the
time of wrapping or adding the paths to TCL's auto_path variable. If the auto_path method is used, the
appropriate tclIndex or pkgIndex.tcl files should also be wrapped into the application. Please see the
information on how to wrap a package extension. Please see Naming and referring to wrapped files for
more details on how to refer to wrapped files within the application.

Both text and binary files can be wrapped.

Page 7 of 30

freeWrap 6.42 Documentation
-debug Option

Use of the -debug option will display the freeWrap console window so any debug warning messages can
be viewed while wrapping.

-f Option

For larger wrap projects, the user may wish to use freeWrap's -f option to specify a file which contains a
list of files to wrap. The specified text file must contain one file name per line. Each file name listed in
the file will be added to the wrapping. Use of the -f option does not preclude the specification of
individual files on the freeWrap command line. The -f option may also be used several times on the same
command line.

Example: freewrap myprog.tcl logo.gif -f projlist.txt code2.tcl -f special.txt

-forcewrap Option

The -forcewrap option can be used to force freeWrap to act as a wrapping program even if it has been
renamed. Without this command line option, freeWrap behaves like a WISH shell when it has been
renamed.

-i Option

Use the -i option to specify the icon you wish to use for your wrapped application. This option is only
relevant when wrapping an application for the Windows operating system.

Example: freewrap myprog.tcl -i myprog.ico

This icon must be an ICO formatted file. This option will replace the freeWrap icon with the contents of
the specified ICO file. When creating your ICO file, keep in mind that freeWrap contains four versions of
the freeWrap icon. They are:

1. 16x16 16 colors

2. 32x32 16 colors

3. 32x32 2 colors

4. 32x32 256 colors

Icons, of these resolutions, found in your ICO file will be used to replace the freeWrap icons. If your ICO
file doesn't contain at least these four versions of your icon then only the matching icons will be replaced.
This would leave a freeWrap icon that could be displayed by Windows at some time.

-o Option

The -o Option allows you to specify the name of the executable program you are creating/wrapping.

-p Option

Using the -p option creates a wrapped application without the freeWrap executable component. This file
is called a freeWrap program package. A freeWrap program package can be run using freeWrap as a
single-file shell By default, freeWrap program packages are given a file extension of fwp.

Example wrapping: freewrap myapp.tcl -p

Example execution: freewish myapp.fwp

Page 8 of 30

freeWrap 6.42 Documentation
-w Option

By default, freeWrap attaches the wrapped files to a copy of the freeWrap program you use to do the
wrapping. The -w option allows attaching the wrapped files to a different copy of freeWrap. Since
freeWrap is available for multiple operating systems, this feature is useful for assembling freeWrapped
applications for other operating systems while on a single computer.

Example (assembling a Windows version while running freeWrap on Linux):

freewrap myprog.tcl -w freewrap.exe

Example (assembling a Linux version while running freeWrap on Windows):

freewrap myprog.tcl -w freewrap

Remember, the argument following the -w option must be the file path to a version of the freeWrap
program that can execute on the other operating system.

Wrapping already wrapped files

Even files previously generated by freeWrap can be wrapped into another freeWrap application.
However, the repetitive inclusion of freeWrap's TCL/TK code would produce fairly large application
files. Therefore, the freeWrap program has been designed to provide efficient packaging of previously
wrapped applications. FreeWrap removes a wrapped program's freeWrap core prior to storing it in the
wrapped application. Only the application's archive section is stored in the new freeWrap application.
This archive section is given a name starting with the string fwpkg_ followed by its original file name and
having an extension of ZIP . It is the responsibility of the programmer to use the ::freewrap::reconnect
command to later reattach the freeWrap core and copy the full application to a disk file.

Example (assume firstApp is a freeWrap generated application)

freewrap myprog.tcl firstApp.exe

creates a file named fwpkg_firstApp.zip inside the application myprog.exe. To restore and copy the
original application (firstApp.exe) to disk the myprog.exe program should use a TCL command similar
to:

::freewrap::reconnect fwpkg_firstApp.zip c:/myprog/bin/firstApp.exe

freeWrap as a single-file WISH interpreter
Renaming the freeWrap program to some other file name causes freeWrap to behave as a a stand-alone,
single-file WISH that can be used to run any TCL/TK script or freeWrap program package. This can be
done in the following manner.

Copy freewrap.exe to a new file name

 Example: copy freewrap.exe wishrun.exe

Use the new file as you would normally use WISH

 Example: wishrun script_name.tcl

Page 9 of 30

freeWrap 6.42 Documentation

freeWrap program packages
FreeWrap normally produces an executable file when wrapping an application. However, it is also
possible the create a file that only contains the wrapped files for the application. This allows you to
distribute smaller packages that can later be run using freeWrap as a single-file TCLSH or WISH
interpreter. A freeWrap program package can contain all the files for your application in a single
compressed file.

Use the -p option when wrapping your application in order to create a freeWrap program package instead
of an executable file.

Example wrapping: freewrap -f listOfiles.txt myapp.tcl -p

Example execution: freewish myapp.fwp

FreeWrap program packages are not encrypted and can be run using a copy of freeWrap 6.3 or later..

freeWrap's console window
Under freeWrap, the console command is available for both Windows and UNIX. The console window is
the location that will receive any STDOUT or STDERR output. The console can also be used to
interactively enter TCL/TK commands. Use console show to display the window and console hide to
remove it.

Using the DDE and Registry packages (Windows only)
The DDE and Registry packages have been compiled into freeWrap. There is no need to load them with a
package require command. Simply use the dde and registry commands without any preceding package
require command.

Using wrapped files.
Wrapping

When running a wrapped application, the first file specified on the command line at the time of wrapping
will be executed as a TCL/TK script. All other files specified on the command line or in a file load list are
available to this executing script.

You CAN do the following with the wrapped files.

1. Source them
2. Open them
3. Read them
4. Close them
5. Glob them
6. Use any file commands that do not write to the files
7. Use them with the image create command
8. Specify them for -bitmap widget options.

Page 10 of 30

freeWrap 6.42 Documentation

You CANNOT do the following with the wrapped files.

1. File delete them (since they exist in the application, not on disk)
2. Use the load command on them. However, you can write them to disk first then use the load

command on the new disk file. You may, instead, consider providing any load-able extension as a
separate file instead of wrapping it.

Naming and referring to wrapped files
All files included in a wrapped application must be referred to by their full path within the application.
However, any relative or full path specification can be used on the freeWrap command line.

Windows users will notice that freeWrap strips all drive letter information from a file's path prior to
storing it inside the wrapped application. When referenced inside the wrapped program, the path to the
wrapped files must have no drive letter. To the wrapped application, all of its internal files will appear to
be on the same "default" drive.

For example, if an application is wrapped to include the file C:\projects\myproject\libmodule1.tcl with the
following command:

freewrap myapp.tcl libmodule1.tcl

You would need to use a source command within the application such as:

source /projects/myproject/libmodule1.tcl

DO NOT expect the relative path of wrapped files to change when you move the executable program.

FreeWrap takes a "snapshot" of the file path for all wrapped files. You must use the same, full path
(minus any drive letter) that existed at the time of wrapping to refer to the wrapped file. It is also
important that the file paths you use in your program exactly match the letter case that exists at the time
of wrapping.

These rules also apply to the file or open commands. Also, make sure the path you add to auto_path
corresponds to the wrapped tclIndex file you include in your application. For example, if your wrapping
command is:

freewrap myapp.tcl c:\devel\myapp1\tclIndex c:\devel\myapp1\libmodule1.tcl

you should add /devel/myapp1 to auto_path.

In summary:

You should use the paths to the files as they exist at the time of wrapping. Wrapping takes a "snapshot" of
the file path for all wrapped files. Do not use relative paths to refer to wrapped files within the application
since relative paths will not be found.

Wrapping and using TCL/TK extensions (packages)
TCL/TK extensions can be wrapped into your application and then loaded dynamically at run time.
Alternatively, if you are willing to recompile freeWrap, TCL/TK extensions may also be statically
compiled into freeWrap. See http://sourceforge.net/projects/freewrap for versions of freeWrap that
already include some statically compiled TCL/TK extensions.

Page 11 of 30

http://sourceforge.net/projects/freewrap

freeWrap 6.42 Documentation
Wrapped applications can load TCL/TK shared binary extension that have been compiled with the new
TEA (i.e., stubs) interface. Stubs-enabled shared libraries can be included in the wrapped application or
exist as separate files.

TCL's package search mechanism uses the glob command to recursively search directories specified in
the auto_path variable to find packages. Unfortunately the glob command does not do the same for
Virtual File System (VFS) files or their directories. This means TCL's package require command will not
descend subdirectories when searching for packages. However, the fix for this is simple. Add the desired
package's file path to the auto_path variable before using the package require command. This can be done
with two lines of code similar to:

lappend auto_path /tcl/lib/mypkg1.0 ;# Ensure our app can find the files
package require mypackage

Script only extensions

Packages consisting only of TCL/TK scripts are generally easy to wrap.

As an example, let us consider the BWidget 1.8 extension. Under Windows the following short batch file
could be used to wrap a sample program using BWidgets named BWidget_demo.tcl.

REM wrapBWidget.bat file
dir /S /B .\BWidget1_8 >Bwidget_files.txt
START /WAIT freewrap.exe BWidget_demo.tcl -f Bwidget_files.txt

These batch commands create a text file containing the list of files that make up the extension (one file
name per line). These commands also assume that the BWidget package has been installed in the
BWidget1_8 directory immediately below the current directory.

For our example, the BWidget_demo.tcl file if found in the current directory and contains the following
TCL/TK commands.

lappend ::auto_path [file dirname [zvfs::list */Bwidget1_8/pkgIndex.tcl]]
package require BWidget

set combo [ComboBox .combo \
 -textvariable comboVal \
 -values {"first value" "second value" "third value" "fourth value" "fifth value"} \
 -helptext "This is the ComboBox"]

set ent [LabelEntry .ent -label "Linked var" -labelwidth 10 -labelanchor w \
 -textvariable comboVal -editable 0 \
 -helptext "This is an Entry reflecting\nthe linked var of ComboBox"]

pack $combo $ent -pady 4 -fill x

The first line of this sample script allows the [package require BWidget] command to find the BWidget
extension.

Running this wrapped application will produce the following pop-up window.

Page 12 of 30

freeWrap 6.42 Documentation

Extensions containing a single binary file

TCL extensions with a single binary file (other script files may be present) are also easy to wrap if:

1. The binary library does not call other binary libraries located inside the wrapped application.

2. The binary library does not call scripts located inside the wrapped application.

Your application code simply needs to add the path to the binary extension's pkgIndex.tcl file to the
auto_path variable so that the usual package require or load commands will find the extension.

The zvfs::list command can be used to make setting auto_path easier. For example:

lappend ::auto_path [file dirname [zvfs::list */myExtension/pkgIndex.tcl]]

More complex extensions with both scripts and binary libraries

If the TCL extension contains more than one binary library or one of the libraries is dependent on other
libraries wrapped into your application you will need to use something like the procedure found in the
following example. This situation is rare and you may never need to do this. However, the Tclxml
package is one such extension and we will use it for our example.

The Tclxml extension has several supporting scripts whose loading is normally automated by the
[package require] command. We need to use the [package require] command but the associated
pkgIndex.tcl file doesn't really know how to load our DLL.

This is easy to correct by making a slight modification to Tclxml's pkgIndex.tcl file so that it uses the
following procedure, freeWrap_load, instead of the regular load command.

proc freewrap_load {libfile args} {
 # This procedure should be used instead of the normal LOAD command when
 # using binary extensions with freeWrap.
 #
 # Returns: On success, the full file path to the shared library on the
 # local file system.
 # On failure, an error message starting with the text "Load
 # Error: "
 #
 global env
 set rtnval {}
 set fpath [::freewrap::unpack $libfile]
 if {[string length $fpath] == 0} {
 set rtnval "Load Error: Copying of shared library $libfile failed."
 } {
 if {[file mtime $libfile] > [file mtime $fpath]} {
 # The wrapped library file is newer than the one on disk.
 # First delete the existing one, then copy the newer file.
 if {[catch {file delete -force $fpath}]} {
 set fpath {}
 set rtnval {Load Error: Unable to delete older copy of
shared library.}

Page 13 of 30

freeWrap 6.42 Documentation
 } {
 set fpath [::freewrap::unpack $libfile]
 if {[string length $fpath] == 0} {
 set rtnval {Load Error: Unable to replace older copy
of shared library.}
 }
 }
 }
 }
 if {[string length $rtnval] == 0} {
 # No errors, so far. Let's load the shared library.
 if {[catch "load \{$fpath\} $args" result]} {
 set rtnval "Load Error: $result"
 } { set rtnval $fpath }
 }
 return $rtnval
}

In our situation, there is one more thing to worry about. The Tclxml.dll has some dependencies (i.e., calls
other DLLs). Therefore, we need to:

1. wrap these other DLLs into our program

2. unpack these other DLLs to the local file system before loading the Tclxml DLL

Again, this is easy to accomplish by making a simple change to the Tclxml pkgIndex.tcl file that we wrap
into our application.

Here is a procedure for wrapping an application containing and using Tclxml version 3.1.

1. Modify the Tclxml pkgIndex.tcl file as follows:

Replace the following line in the pkgIndex.tcl file

package ifneeded xml::c 3.1 [list load [file join $dir Tclxml31.dll]]

with (the following is a single line. It may suffer from wrap around)

package ifneeded xml::c 3.1 [foreach fpath [zvfs::list *.dll]
{freewrap::unpack $fpath}; freewrap_load [zvfs::list */Tclxml31.dll]]

This modification will unpack all DLLs from the wrapped binary, then load the Tclxml DLL
itself.

2. Add some code to the application to adjust the auto_path variable. We must ensure that all
wrapped directories containing pkgIndex.tcl files are added to auto_path. For this project, the
following code is added at the beginning of the application. It should be executed before the
[package require] command.

foreach fpath [zvfs::list */win/*/pkgIndex.tcl] {
 lappend auto_path [file dirname $fpath]
 }

As you can see, with this code, the location of the files is determined at run time. We don't have to

Page 14 of 30

freeWrap 6.42 Documentation
keep track of them to properly update the code. The [zvgs::list] command is very useful for
locating your wrapped files.

3. Use a [package require xml] command in the application to load the Tclxml package.

4. FreeWrap the application making sure all the supporting DLLs and script files are included.

Using the WINICO features
Windows versions of freeWrap incorporate release 0.6 of the Winico extension. The following files
associated with the Winico extension are included along with the freeWrap documentation.

File Description

license.winico The Winico license included with the Winico 0.6 distribution

readme.winico The README file included with the Winico 0.6 distribution

winico.html The Winico version 0.6 documentation in HTML format

Special variables, procedures and commands defined by freeWrap

The ::freewrap namespace

FreeWrap has a namespace which contains all of the freeWrap specific variables, commands and
procedures. These variables, commands and procedures may be referenced using the ::freewrap:: prefix or
imported into any other namespace.

Variables

The following variables are defined in the ::freewrap namespace of each wrapped application.

Name Description

errormsg This variable is set by the ::freewrap::unpack procedure when a file cannot be written to
the requested destination.

patchLevel Revision level of the freeWrap program used to wrap the application.

progname The proper name for the freeWrap program for the current operating system. This is
normally freewrap.exe under Windows and freewrap under UNIX.

runMode This variable indicates whether freeWrap is running as:
Value of variable Meaning

interactiveShell an interactive shell

programPackage a wrapped executable program

standAloneShell a stand-alone shell running a script

Page 15 of 30

freeWrap 6.42 Documentation

The freeWrap stub

It is important to note that all freeWrapped applications contain a copy of the freeWrap program itself.
The first part of a wrapped application consists of this freeWrap "stub". Therefore, knowing the size of
this freeWrap stub, it is possible to extract freeWrap from the wrapped application and copy it to another
file.

Procedures

The following procedures are defined in the ::freewrap namespace of each wrapped application. The
commands names starting with shell_ are only available under the Windows operating system.

Syntax: getStubSize [execname]

Description: Retrieves the current size of the freeWrap stub associated with the file execname . This
function returns the size in bytes or 0, if the stub size cannot be determined.

Syntax: isSameRev file_name

Description: Checks whether the specified file contains a copy of the same freeWrap revision as the
currently executing program.

Returns: 0, if file does not contain a copy and 1, if file contains a copy.

Syntax: iswrapped file_name

Description: Determines whether the file named file_name is a freeWrapped application.

If file_name is a freeWrapped application this procedure returns a value of 1.

If file_name is NOT a freeWrapped application this procedure returns a value of 0.

Syntax: reconnect pkgName, appName

Description: Reattaches the freeWrap core to pkgName, a file included in the current freeWrapped
application. The recombined freeWrapped application is copied to the file appName.
pkgName must be the archive portion of a freeWrapped application.

Syntax: shell_assoc_exist extension

Description: Check whether a key exists for an extension

Example: shell_assoc_exist .txt => 1
Example: shell_assoc_exist .NEVER => 0

Page 16 of 30

freeWrap 6.42 Documentation

Syntax: shell_fileType_exist fileType

Description: Determine whether a file type exists

Example: shell_fileType_exist txtfile => 1
Example: shell_fileType_exist NEVER => 0

Syntax: shell_fileExtension_setup extension, fileType

Description: Creates a file extension and associates it with fileType.
Example: shell_fileExtension_setup .txt txtfile

Remove connection between extension and fileType
Example: shell_fileExtension_setup .txt ""

Syntax: shell_fileType_setup fileType, title

Description: Creates a file type.
Example: shell_fileType_setup txtfile "Text Document"

Syntax: shell_fileType_open fileType, openCommand

Description: Creates an open command. Sets action for double click.
Example: shell_fileType_open txtfile "C:\\WINDOWS\\NOTEPAD.EXE %1"

Syntax: shell_fileType_print fileType, printCommand

Description: Creates a print command for right mouse button menu.
Example: shell_fileType_print txtfile "C:\\WINDOWS\\NOTEPAD.EXE /p %1"}

Syntax: shell_fileType_icon fileType, icon

Description: Sets an icon for a fileType.
Example: shell_fileType_icon txtfile "C:\\WINDOWS\\SYSTEM\\shell32.dll,-152"
Example: shell_fileType_icon txtfile "C:\\mydir\\myicon.ico"

We can give a name.ico file or a dll or exe file here. If a dll or exe file is used the index
for the resource inside the file must be specified

Syntax: shell_fileType_quickView fileType, quickViewCmd

Description: Sets the command to execute to perform a quick view for a fileType.
Example: shell_fileType_quickView txtfile "write.exe %1"

Syntax: shell_fileType_addAny_cmd fileType, cmdName, cmd

Page 17 of 30

freeWrap 6.42 Documentation

Adds any command you want to a fileType.
Example: shell_fileType_addAny_cmd scrfile config "%1"

Syntax: shell_fileType_setMenuName fileType, cmdName, str

Description: Change description in right mouse menu for a command associated with a fileType.
Example: shell_fileType_setMenuName txtfile print "Print file"

Syntax: shell_fileType_showExt fileType, yesOrNo

Description: Always show the extension on the fileType.
Example: shell_fileType_showExt txtfile 1

Turn off "Always show" of extension on the fileType
Example: shell_fileType_showExt txtfile 0

Syntax: shell_fileType_setCmdOrder fileType, cmds

Description: Over-ride the default ordering of commands on right mouse menu.
Example: shell_fileType_setCmdOrder txtfile {print open}

Syntax: shell_fileType_neverShowExt fileType, yesOrNo

Description: Never show extension on fileType.
Example: shell_fileType_neverShowExt txtfile 1

Turn off "Never show" of extension on the fileType.
Example: shell_fileType_neverShowExt txtfile 0

Syntax: shell_getCmds file

Description: Retrieves all the commands assocated with an extension.
Example: shell_getCmds file.txt => open print

Syntax: shell_getCmd_imp file, cmd

Description: Retrieves the implimentation of a command given a file extension and command.
Example: shell_getCmd_imp test.txt open => C:\\WINDOWS\\NOTEPAD.EXE %1

Syntax: unpack file_name, [destdir]

Description: This function unpacks file_name from a freeWrapped application's ZVFS archive
 into a file system directory. The destination directory for the file may be specified with
the optional destdir argument. If this optional argument is not specified, the function will
select a temporary directory appropriate for the operating system. Unpack, on success,
returns the full path to the newly created file and on failure, an empty string. This

Page 18 of 30

freeWrap 6.42 Documentation

function is useful for creating local copies of wrapped shared libraries (e.g. DLLs) that
can then be loaded into your wrapped TCL/TK application.

Page 19 of 30

freeWrap 6.42 Documentation

Commands

The following TCL commands are defined in the ::freewrap namespace of each wrapped application.

Syntax: getSpecialDir dirType

Description: Find "Start Menu", "Desktop" and similar directory locations under Windows. DirType
must be one of the following strings:

ALTSTARTUP
APPDATA
BITBUCKET
COMMON_ALTSTARTUP
COMMON_DESKTOPDIRECTORY
COMMON_FAVORITES
COMMON_PROGRAMS
COMMON_STARTMENU
COMMON_STARTUP
CONTROLS
COOKIES
DESKTOP
DESKTOPDIRECTORY
DRIVES
FAVORITES

FONTS
HISTORY
INTERNET
INTERNET_CACH
NETHOOD
NETWORK
PERSONAL
PRINTERS
PRINTHOOD
PROGRAMS
RECENT
SENDTO
STARTMENU
STARTUP
TEMPLATES

Syntax: makeZIP [-options] [-b path] [-t mmddyyyy] [-n suffixes] [ZIPfile FileList] [-xi list]

Description: This command duplicates most of the functionality of the Info-Zip application using the
following syntax which is almost identical to the ZIP command line program.

The default action is to add or replace files in ZIPfile with the files specified by FileList.

The following optional arguments may be used.
-0 store only
 -1 compress faster
 -9 compress better
 -A adjust self-extracting exe
 -b path use this directory path for the temporary file
 -d delete enetries in zipfile
 -D do not add directory entries
 -f freshen: only changed files
 -F fix zipfile (-FF try harder)
 -i list include only the following file names
 -j junk (don't record) directory names
 -J junk zipfile prefix(unzipsfx)
 -l convert LF to CR LF (-ll CR LF to LF)
 -m move into zipfile (delete files)
 -n suffixes don't compress these suffixes

Page 20 of 30

freeWrap 6.42 Documentation

 -o make zipfile as old as latest entry
 -r recurse into directories
 -t mmddyyyy exclude files earlier than the specified date
 -u update: only changed or new files
 -x list exclude the following names
 -X exclude extra file attributes
 -y store symbolic links as the link instead of the referenced file

Syntax: shortcut linkPath[-objectPath objectPath] [-description description] [-workingDirectory
dir] [-icon path index] [-arguments args]

Description: Creates a Windows shortcut. The only required parameter is the linkPath. This means you
can create a shortcut with no target, which probably isn't useful. The icon of the shortcut
will default to the icon of the target item if not specified.

Argument Explanation

linkPath The path to the shortcut file (including the
extension .lnk)

objectPath The target of the link

description Shortcut description

workingDirectory Working (startup) directory for the target of
the shortcut

path index (icon) Specifies the path to a file and the index of the
icon in that file to use for the shortcut

args Arguments passed to the target of the shortcut
when started.

Page 21 of 30

freeWrap 6.42 Documentation

Character encodings
All encoding files available with the TCL distribution have been compiled into the freeWrap application.

Under the Windows version of freeWrap, the encoding names command is not able to list your wrapped
encoding files. However, the other encoding commands will work correctly. As an alternative, you could
use the zvfs::list command to find the wrapped encoding files. For example:

set encFiles [zvfs::list /tcl/encoding/*]

The TCL encoding files included with freeWrap can be accessed by specifying their full ZVFS path when
using one of the encoding commands. For example:

encoding system /tcl/encoding/cp850

FreeWrap sets the initial system encoding to cp1252. The Tcl source command always reads files using
the system encoding. A difficulty arises when distributing scripts internationally, as you don't necessarily
know what the system encoding will be. Fortunately, most common character encodings include the
standard 7-bit ASCII characters as a subset. Therefore, you are usually safe if your script contains only 7-
bit ASCII characters.

If you need to use a character set other than cp1252 for the scripts that you distribute, you can provide a
small "bootstrap" script written in 7-bit ASCII. The bootstrap script should first set the system encoding
to the desired value then source the desired script.

For example, the contents of the bootstrap script (named myprogram.tcl here) could be:

Set the desired encoding first.
encoding system /tcl/encoding/cp850
Now, let's run the real program.
source myrealprogram.tcl

You would then wrap your application using the following command:

freewrap myprogram.tcl myrealprogram.tcl

Stdin/Stdout redirection with the exec and open commands
The Windows version of freeWrap now includes the tcl84pip.dll file from the normal TCL distribution.
This file is necessary when running scripts that redirect stdin/stdout through pipes using the open or exec
commands. Tcl84pip.dll is actually an executable program that helps do the redirection of stdin and stdout
when execing programs under Windows.

If your application will be using the exec or open commands to run external applications that will be
piping stdin or stdout to transfer information, make sure that tclpip84.dll can be found in a location that
TCL normally looks (e.g, the current directory, the Windows directory or the same directory as the
executable program).

How freeWrap encryption works
FreeWrap now includes ZIP 2.0 style file encryption. FreeWrap encrypts all files stored into its internal

Page 22 of 30

freeWrap 6.42 Documentation
ZIP Virtual File System. It also encrypts all files wrapped into an a single-file executable application. The
password required for handling the encrypted files is embedded into the wrapped program.

The password key is included as a function. Embedding the password as a compiled function makes it
extremely difficult to deduce the password by looking at the executable file.

FreeWrap can easily be built to use a different embedded password that no one else has access to. This is
important for generating wrapped applications where you wish to prevent others from viewing the source
code. Remember, due to freeWrap's ability to mount ZIP files as a subdirectory, a person having the same
version of freeWrap (with the same password) can easily read the encrypted files within your application.
Therefore, those people interesting in securing the files that make up their application should use a copy
of freeWrap (built with its own unique password) that no one else has access to.

FreeWrap program packages, however, are not encrypted since doing so would require distribution of the
copy of freeWrap used to create the package in order to run them. Such a copy of freeWrap could them be
easily used to defeat the encryption of the wrapped package.

Page 23 of 30

freeWrap 6.42 Documentation

Building freeWrap
FreeWrap does not include any alterations to the TCL/TK core. It is plain-vanilla TCL/TK with
sometimes an extension such as TkTable thrown in.

Dependencies

Compilation of the freeWrap executables requires the following additional libraries:

1. TCL (Tool Command Language) static library

2. TK (Tool Kit for TCL) static library

3. Zlib compression static library

4. Info-ZIP compiled object files

5. TkTable extension static library (for freeWrapPLUS version only)

6. SQLite extension static library (for freeWrapPLUS version only)

The following helper applications are needed as part of the freeWrap build process and will be called by
the Make files. These programs should be placed in freeWrap's unix and win directories.

1. tclsh (used to run the setinfo.tcl and shrink.tcl scripts)

2. info-ZIP (used to attach zip archive to end of freeWrap program)

How to build freeWrap version 6.42

1. Compile static libraries for TCL and for TK

Under Windows

Static TCL and TK libraries can be built using the OPTS=static option with makefile.vc.

Example: nmake makefile.vc OPTS=static

Under Linux

Static TCL/TK libraries can be built under UNIX by using the --disable-shared option of the
configure script. The LIB_TCL variable in makefile.linux must point to this file. This file is
usually stored someplace like /usr/local/lib/libtcl85.a when "make install" is run as part of the
TCL build process.

2. Compile the zlib general purpose data compression library. Version 1.2.3 was used for
freeWrap 6.42.

Source code for this library is available from the zlib home page: http://www.gzip.org/zlib/

Page 24 of 30

http://www.gzip.org/zlib/

freeWrap 6.42 Documentation

3. Obtain the ZIP-2.3 program source code from Info-Zip's SourceForge site:
http://sourceforge.net/project/showfiles.php?group_id=118012

Do not use any other version of the ZIP program (e.g., 2.31 or 2.32). FreeWrap includes a
customized version of ZIP's zip.c module that will only work properly with version ZIP 2.3.

Compile the ZIP program. The freeWrap Make file uses the object modules produced as a
result of building the ZIP program. These modules provide the ZIP program features within
freeWrap. The ZIPOBJDIR variable defined in the freeWrap Make files will need to be set to
the name of the directory in which the ZIP program distribution has been extracted and
compiled.

Make sure that the version of the ZIP source code you retrieve includes the encryption feature.
That is, the resulting executable file has a -e option as part of its command line syntax.

The freeWrap Make file also uses the ZIP program to help assemble the freeWrap executable.
You should, therefore, place the ZIP program in the unix or win subdirectory (as appropriate)
of the freeWrap build tree.

4. If you wish to produce the freewrapPLUS version, you will also need to obtain and compile the
following TCL/TK extensions.

TkTable 2.9 from http://sourceforge.net/project/showfiles.php?group_id=11464

Under Linux

The TkTable make file should be generated using the --disable-shared option of the configure
script. This will cause the TkTable Make file to produce a static library file that the freeWrap
Make file will use.

Under Windows

Use the makefile.vc file that comes with TkTable to build the Windows DLL. Although this
method builds a DLL the freeWrap Make file will, instead, use the object files created as a
result of using makefile.vc.

SQLite 3.5.3 from http://www.sqlite.org/download.html

Obtain the amalgamated version of the the SQLite source code (file sqlite-
amalgamation-3_5_3.zip). Extract the files from this archive.

Obtain the source code distribution (file sqlite-source-3_5_3.zip). Append the file tclsqlite.c
found in the source code distribution to the file sqlite3.c found in the amalgamation. Compile
the append file as suggested below. Remember to modify the freeWrap Make files so that
LIB_SQLITE points to this compiled object file.

Under Linux

Compile the appended sqlite3.c using a command such as:

Page 25 of 30

http://www.sqlite.org/download.html
http://sourceforge.net/project/showfiles.php?group_id=11464
http://sourceforge.net/project/showfiles.php?group_id=118012

freeWrap 6.42 Documentation
cc -c sqlite3.c

Under Windows

Compile the appended sqlist3.c using a command such as:

cl -DSTATIC_BUILD=1 -D__WIN32 -DWIN32 -DWINDOWS -DNDEBUG /MT /GX -Z 7 -
Od /FD /c sqlite3.c

5. Use the main.c and other source code files provided with the freeWrap distribution.

Use the generic/main.c file provided with the freeWrap source code distribution to build any
version of freeWrap. This file has been written to use the ZIP Virtual File System and perform
initializations normally done by the standard TCL/TK distribution. The freeWrap Make file has
been designed to use main.c.

The main.c source code is also the location in which any statically linked TCL/TK extensions
should be initialized. The file currently contains examples of source code for initializing
several common extensions.

The generic/freelib.c and generic/freewrapCmds.tcl files implement some TCL commands
added by freeWrap.

The generic/zipmain.c file provides the code to implement the ::freewrap::makeZIP command.

The generic/zvfs.c file implements the ZIP Virtual File System used by freeWrap.

The file generic/fwcrypt.c will be automatically generated by the freeWrap Make file the first
time freeWrap is built. This file provides a function that returns the password freeWrap will
use for encryption. A new randomly selected password is generated whenever this file is
recreated.

The generic/seticon.tcl, generic/setinfo.tcl and generic/shrink.tcl scripts are used by the
freeWrap Makefile in the creation of the freeWrap program.

The generic/freewrap.tcl script is the portion of freeWrap that controls the wrapping process.

6. Use the Make file that comes with the freeWrap source code distribution to build freeWrap.
You will need to modify the Make file to reflect the file paths for your computer system.

The path defined by INSTALLDIR within the Make file must point to the installation directory
for the version of TCL/TK from which you are building freeWrap. The Make file will copy the
TCL/TK scripts and libraries it needs from this location.

To build different versions of freeWrap (e.g., freeWrapPLUS), modify the Make file to have
the proper value of FW_EXT. See the comments in the Make file for details.

Under Linux

The Linux Make file is written to use the gcc compiler.

Make command: make -f makefile.linux

Page 26 of 30

freeWrap 6.42 Documentation
Under Windows

The Windows Make file is written to support the MS Visual C++
2008 Express Edition.

Make command: nmake -f makefile.vc

8. With the addition of ZIP 2.0 style file encryption, the freeWrap build process now includes an
interactive step. During this step, you must enter the password key that is compiled into
freeWrap at a console prompt. This password is automatically generated the first time
freeWrap is built and will be printed to the screen immediately before you need to type it in.

The password key is included into freeWrap as a function. The source code for this function is
automatically generated by the Make file the first time freeWrap is built. This source code is
placed in a file named fwcrypt.c. Embedding the password into freeWrap as a function makes it
extremely difficult to detect the password by looking at the executable file.

Each generation of this file results in a completely different password. This allows you to build
your own version of freeWrap with its own password that no one else knows. This is important
for generating wrapped applications where you wish to prevent others from viewing the source
code. Due to freeWrap's ability to mount ZIP files as a subdirectory, a person having the same
version of freeWrap (with the same password) can easily read the encrypted files within your
application. Therefore, those people interesting in securing the files that make up their
application should compile their own copy of freeWrap.

Page 27 of 30

freeWrap 6.42 Documentation

ZVFS: The ZIP Virtual File System TCL Extension

Introduction

The freeWrap program is a TCL/TK script that has been attached to a single-file version of the WISH
shell program. The single-file WISH was created with the help of the ZIP Virtual File System (ZVFS)
source code provided by D. Richard Hipp. The ZVFS code has been adapted for use with TCL's virtual
file system interface.

ZVFS is an extension to TCL that causes TCL to view the contents of a ZIP archive as real,
uncompressed, individually-accessible files. Using ZVFS, you "mount" a ZIP archive on a directory of
your filesystem. Thereafter, all of the contents of the ZIP archive appear to be files contained within the
directory on which the ZIP file is mounted. The ZVFS extension is written in the C language.

For example, suppose you have a ZIP archive named example1.zip and suppose this archive contains
three files named abc.tcl, pqrs.gif, and xyz.tcl. You can mount this ZIP archive as follows:

zvfs::mount example1.zip /zip1

After executing the above command, the contents of the ZIP archive appear to be files in the /zip1
directory. So, for instance, you can now execute commands like these:

source /zip1/abc.tcl
image create photo img1 -data /zip1/pqrs.gif
puts "The size of file xyz.tcl is [file size /zip1/xyz.tcl]"

The files /zip1/abc.tcl, /zip1/pqrs.gif, and /zip1.xyz.tcl never really exist as separate files on your disk
drive. They are always contained within the ZIP archive and are not unpacked. The ZVFS extension
intercepts Tcl's attempt to open and read these files and substitutes data from the ZIP archive that is
extracted and decompressed on the fly.

Using ZVFS

The ZVFS has been compiled into freeWrap using TCL's Virtual File System (VFS) interface. This
extension provides the following new TCL commands:

• zvfs::mount ZIP-archive-name mount-point
• zvfs::unmount ZIP-archive-name
• zvfs::exists filename
• zvfs::info filename
• zvfs::list ?(-glob|-regexp)? ?pattern?

As discussed above, the zvfs::mount command mounts a new ZIP archive file so that the contents of the
archive appear to TCLl to be regular files. The first argument is the name of the ZIP archive file. The
second argument is the name of the directory that will appear to hold the contents of the ZIP archive. The
ZIP archive may be unmounted using the zvfs::unmount command.

The zvfs::exists command checks to see if the file named as its first argument exists in a mounted ZIP

Page 28 of 30

freeWrap 6.42 Documentation
archive. You can do almost the same thing with the built-in file exists command of TCL. The file exists
command will return true if the named file is contained in a mounted ZIP archive. But file exists will also
return true if its argument is a real file on the disk, whereas zvfs::exists will only return true if the
argument is contain in a mounted ZIP archive.

The zvfs::info command takes a single argument which is the name of a file contained in a mounted ZIP
archive. If the argument is something other than such a file, this routine returns an empty string. IF the
argument is a file in a ZIP archive, then this routine returns the following information about that file:

• The name of the ZIP archive that contains the file
• The uncompressed size of the file in bytes
• The compressed size of the file in bytes
• The offset of the beginning of the file in the ZIP archive

The zvfs::list command returns a list of all files contained within all mounted ZIP archives. If a single
argument is given, that argument is interpreted as a glob pattern and only files that match that glob pattern
will match. If the -regexp switch appears then the argument is interpreted as a regular expression and
only files that match the regular expression are listed.

Limitations

The files in a ZIP archive are read-only. You cannot open a ZVFS mounted file for writing.

The renaming or deletion of files in the ZVFS is not supported.

Overlays

ZVFS allows you to mount a ZIP archive on top of an existing file system. TCL first looks for the file in
the ZIP archive and if it is not found there it then looks in the underlying file system. You can also mount
multiple ZIP archives on top of one another. The ZIP archives are searched from the most recently
mounted back to the least recently mounted.

This overlay behavior is useful for distributing patches or updates to a large program. Suppose you have a
large application that contains many TCL scripts which you distribute as a single ZIP archive file. You
can start up your application using code like the following:

foreach file [lsort -dictionary [glob appcode*.zip]] {
 zvfs::mount $file /appcode
}

This loop finds all ZIP archive (in a certain directory) that begin with the prefix appcode. It then mounts
each ZIP archive on the same /appcode directory.

You can use this scheme to ship the TCL scripts of your application in a file named appcode000.zip. If
there is later a change or update to your program that effects a small subset of the TCL scripts, you can
create a patch file named appcode001.zip that contains only the scripts that changed. By placing
appcode001.zip in the same directory as appcode000.zip and restarting the application, all the files in
appcode001.zip will override files with the same name in appcode000.zip. Subsequent updates can be
named appcode002.zip, appcode003.zip, and so forth.

This kind of update scheme makes it very easy to back out a change. Suppose after trying out a particular

Page 29 of 30

freeWrap 6.42 Documentation
update, the user decides they do not like it and want to go back to the prior version. All they have to do is
remove (or rename) the appropriate appcode*.zip file and restart the application and the code
automatically reverts to its previous configuration. Updates are completely and trivially reversible!

Using The Executable As The ZIP Archive

The directory information for most executable formats is at the beginning of the file and the directory
information for the ZIP archive format is at the end of the file. This means that you can append extra data
to an executable and the operating system will not care and you can add information to the start of a ZIP
archive and the ZVFS extension will not care. So then, there is nothing to prevent you from appending
the ZIP archive to the executable that contains a TCL interpreter and thereby put your entire application
into a single standalone file. The freeWrap application does this.

FreeWrap is a compiled C program that creates a TCL interpreter, adds the ZVFS extention, reads the
TCL initialization scripts from the attached ZIP archive then executes a TCL script from the same
archive. The capabilities of the ZIP archiver program Info-ZIP has been compiled into freeWrap. These
capabilities are used by freeWrap to perform all file additions and deletions to the archive portion of
freeWrapped applications.

When you execute freeWrap or freeWrapped applications, the operating system loads and runs the first
part of the file as the executable. Then the freeWrap code calls the ZVFS extension to read the TCL
scripts from the end of the file.

ZVFS source code

The source to the ZVFS extension is contained in a single C file named zvfs.c and is included with the
freeWrap source code distribution.

Page 30 of 30

	freeWrap License
	Overview
	Availability
	freeWrap as a TCL/TK wrapper program
	freeWrap as a single-file WISH interpreter
	freeWrap program packages
	freeWrap's console window
	Using the DDE and Registry packages (Windows only)
	Using wrapped files.
	Naming and referring to wrapped files
	Wrapping and using TCL/TK extensions (packages)
	Script only extensions
	Extensions containing a single binary file
	More complex extensions with both scripts and binary libraries

	Using the WINICO features
	Special variables, procedures and commands defined by freeWrap
	The ::freewrap namespace
	The freeWrap stub
	Procedures
	Commands

	Character encodings
	Stdin/Stdout redirection with the exec and open commands
	How freeWrap encryption works
	Building freeWrap
	Dependencies
	How to build freeWrap version 6.42

	ZVFS: The ZIP Virtual File System TCL Extension
	Introduction
	Using ZVFS
	Limitations
	Overlays
	Using The Executable As The ZIP Archive
	ZVFS source code

